Causative role of oxidative stress in a Drosophila model of Friedreich ataxia.
نویسندگان
چکیده
Friedreich ataxia (FA), the most common form of hereditary ataxia, is caused by a deficit in the mitochondrial protein frataxin. While several hypotheses have been suggested, frataxin function is not well understood. Oxidative stress has been suggested to play a role in the pathophysiology of FA, but this view has been recently questioned, and its link to frataxin is unclear. Here, we report the use of RNA interference (RNAi) to suppress the Drosophila frataxin gene (fh) expression. This model system parallels the situation in FA patients, namely a moderate systemic reduction of frataxin levels compatible with normal embryonic development. Under these conditions, fh-RNAi flies showed a shortened life span, reduced climbing abilities, and enhanced sensitivity to oxidative stress. Under hyperoxia, fh-RNAi flies also showed a dramatic reduction of aconitase activity that seriously impairs the mitochondrial respiration while the activities of succinate dehydrogenase, respiratory complex I and II, and indirectly complex III and IV are normal. Remarkably, frataxin overexpression also induced the oxidative-mediated inactivation of mitochondrial aconitase. This work demonstrates, for the first time, the essential function of frataxin in protecting aconitase from oxidative stress-dependent inactivation in a multicellular organism. Moreover our data support an important role of oxidative stress in the progression of FA and suggest a tissue-dependent sensitivity to frataxin imbalance. We propose that in FA, the oxidative mediated inactivation of aconitase, which occurs normally during the aging process, is enhanced due to the lack of frataxin.
منابع مشابه
Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids
Friedreich ataxia is an autosomal recessive, inherited neuro- and cardio-degenerative disorder characterized by progressive ataxia of all four limbs, dysarthria, areflexia, sensory loss, skeletal deformities, and hypertrophic cardiomyopathy. Most disease alleles have a trinucleotide repeat expansion in the first intron of the FXN gene, which decreases expression of the encoded protein frataxin....
متن کاملMolecular and Clinical Investigation of Iranian Patients with Friedreich Ataxia
Background: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable ...
متن کاملNeurobiology of Disease Defects in Mitochondrial Axonal Transport and Membrane Potential without Increased Reactive Oxygen Species Production in a Drosophila Model of Friedreich Ataxia
Friedreich ataxia, a neurodegenerative disorder resulting from frataxin deficiency, is thought to involve progressive cellular damage from oxidative stress. In Drosophila larvae with reduced frataxin expression (DfhIR), we evaluated possible mechanisms of cellular neuropathology by quantifying mitochondrial axonal transport, membrane potential (MMP), and reactive oxygen species (ROS) production...
متن کاملImpaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia
BACKGROUND Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression. METHODOLOGY/PRINCIPAL FINDINGS We thus investigate...
متن کاملDefects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia.
Friedreich ataxia, a neurodegenerative disorder resulting from frataxin deficiency, is thought to involve progressive cellular damage from oxidative stress. In Drosophila larvae with reduced frataxin expression (DfhIR), we evaluated possible mechanisms of cellular neuropathology by quantifying mitochondrial axonal transport, membrane potential (MMP), and reactive oxygen species (ROS) production...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2007